miércoles, 2 de junio de 2010

la ley de Ohm

La Ley de Ohm

George Simon Ohm, descubrió en 1827 que la corriente en un circuito de corriente continua varía directamente proporcional con la diferencia de potencial, e inversamente proporcional con la resistencia del circuito. La ley de Ohm, establece que la corriente eléctrica (I) en un conductor o circuito, es igual a la diferencia de potencial (V) sobre el conductor (o circuito), dividido por la resistencia (R) que opone al paso, él mismo. La ley de Ohm se aplica a la totalidad de un circuito o a una parte o conductor del mismo.I = V / R ;V = I x REn los circuitos de corriente continua, puede resolverse la relación entre la corriente, voltaje, resistencia y potencia con la ayuda de un gráfico de sectores, este diagrama ha sido uno de los más socorridos:En este grafico puede apreciarse que hay cuatro cuadrantes que representan: V Voltaje, I Corriente, R Resistencia y W Potencia. De modo que, conociendo la cantidad de dos cualesquiera, nos permite encontrar el otro valor. Por ejemplo, si se tiene una resistencia de 1k y en sus extremos se mide una tensión de 10 Voltios, entonces la corriente que fluye a través de la resistencia será V/R = 0'01A o 10mA.De forma similar, la potencia absorbida por esta resistencia será el cociente de V2 / R = 0'1W o 100mW, otra forma de hallar la potencia es con el producto de V x I o sea, 10V x 0'01 = 0'1W, con esto se confirma lo dicho.

ley de kirchoff

Las Leyes de Kirchoff:

Las dos primeras leyes establecidas por Gustav R. Kirchhoff (1824-1887) son indispensables para los cálculos de circuitos, estas leyes son:1. La suma de las corrientes que entran, en un nudo o punto de unión de un circuito es igual a la suma de las corrientes que salen de ese nudo. Si asignamos el signo más (+) a las corrientes que entran en la unión, y el signo menos (-) a las que salen de ella, entonces la ley establece que la suma algebraica de las corrientes en un punto de unión es cero:(suma algebraica de I) Σ I = 0 (en la unión)2. Para todo conjunto de conductores que forman un circuito cerrado, se verifica que la suma de las caídas de tensión en las resistencias que constituyen la malla, es igual a la suma de las f.e.ms. intercaladas. Considerando un aumento de potencial como positivo (+) y una caída de potencial como negativo (-), la suma algebraica de las diferencias de potenciales (tensiones, voltajes) en una malla cerrada es cero:(suma algebraica de E) Σ E - Σ I*R = 0 (suma algebraica de las caídas I*R, en la malla cerrada)Como consecuencia de esto en la práctica para aplicar esta ley, supondremos una dirección arbitraria para la corriente en cada rama. Así, en principio, el extremo de la resistencia, por donde penetra la corriente, es positivo con respecto al otro extremo. Si la solución para la corriente que se resuelva, hace que queden invertidas las polaridades, es porque la supuesta dirección de la corriente en esa rama, es la opuesta.Por ejemplo:Las flechas representan la dirección del flujo de la corriente en el nudo. I1 entra a la unión, considerando que I2 e I3 salen. Si I1 fuera 20 A e I3 fuera 5 A, I2 tendría 15 A, según la ley de voltaje de I1=I2 + I3. La ley de Kirchoff para los voltajes es, la suma de voltajes alrededor de un circuito cerrado es igual a cero. Esto también puede expresarse como la suma de voltajes de un circuito cerrado es igual a la suma de voltajes de las fuentes de tensión:En la figura anterior, la suma de las caídas de voltaje en R1, R2 y R3 deben ser igual a 10V o sea, 10V =V1+ V2+ V3. Aquí un ejemplo:Las corrientes de I2 e I3 y la resistencia desconocida R3 centran todos los cálculos, usando la teoría básica de la corriente continua. La dirección del flujo de la corriente está indicado por las flechas.• El voltaje en el lado izquierdo (la resistencia R1 de 10 Ω), está saliendo del terminal superior de la resistencia.• La d. d. p. en esta resistencia R1 es de I1 * R o sea, 5 voltios. Esto está en oposición de los 15 voltios de la batería.• Por la ley de kirchoff del voltaje, la d. d. p. por la resistencia R2 de 10 Ω es así 15-5 o sea, 10 voltios.• Usando la ley Ohm, la corriente a través de la resistencia R2 10 Ω es entonces (V/R) 1 amperio.• Usando la ley de Kirchoff de la corriente y ahora conociendo el I1 e I3, el I2 se encuentra como I3=I1+I2 por consiguiente el amperaje de I2= 0.5A.• De nuevo, usando la ley de Kirchoff del voltaje, la d. d. p. para R3 puede calcularse como, 20 = I2*R3 +10. El voltaje por R3 (el I2*R3) es entonces 10 voltios. El valor de R3 es (V/I) o 10/0.5 o 20Ω.Otro ejemplo:Supongamos que queremos saber la potencia de cada fuente de tensión y la potencia que disipa cada resistencia en el siguiente circuito:Para resolver el problema planteado en este circuito, debemos plantear las ecuaciones de cuatro mallas como se muestra en la siguiente figura.Para simplificar las ecuaciones en principio suprimimos las fuentes de corriente.Malla1:V1 + Im1*VR1 + Im1*VR2 + Im1/VR3 - Im2*VR3 = 0Malla2:Im2*VR3 - Im1*VR3 + Im2*VR4 = 0Malla3:Im3*VR4 - Im2*VR5 - Im4*VR5 + Im3*VR6 - Im4*VR6 = 0Malla4:-V2 + Im*VR6 - Im3*VR6 - Im3*VR5 + Im4*VR7 + Im4*VR8 = 0De donde:Im1 = A12, Im2 = A1, Im4 = A2A3 = Im1 - Im2, A4 = Im2 - Im3, A56 = Im3 - Im4

circuitos electricos

circuitos electricos:

Se denomina circuito eléctrico a una serie de elementos o componentes eléctricos o electrónicos, tales como resistencias, inductancias, condensadores, fuentes, y/o dispositivos electrónicos semiconductores, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas o eléctricas. En la figura podemos ver un circuito eléctrico, sencillo pero completo, al tener las partes fundamentales:
Una fuente de energía eléctrica, en este caso la pila o batería.Una aplicación, en este caso una lámpara incandescente.Unos elementos de control o de maniobra, el interruptor.Un instrumento de medida, el Amperímetro, que mide la intensidad de corriente.El cableado y conexiones que completan el circuito.Un circuito eléctrico tiene que tener estas partes, o ser parte de ellas.
CIRCUITO ELÉCTRICO, trayecto o ruta de una corriente eléctrica. El término se utiliza principalmente para definir un trayecto continuo compuesto por conductores y dispositivos conductores, que incluye una fuente de fuerza electromotriz que transporta la corriente por el circuito. Un circuito de este tipo se denomina circuito cerrado, y aquéllos en los que el trayecto no es continuo se denominan abiertos. Un cortocircuito es un circuito en el que se efectúa una conexión directa, sin resistencia, inductancia ni capacitancia apreciables, entre los terminales de la fuente de fuerza electromotriz.

reflexion

reflexion

El término reflexión puede tener distintos significados:
En física se refiere al fenómeno por el cual un rayo de luz que incide sobre una superficie es reflejado. El ángulo con la normal a esa superficie que forman los rayos incidente y reflejado son iguales. Se produce también un fenómeno de absorción diferencial en la superficie, por el cual la energía y espectro del rayo reflejado no coinciden con la del incidente. Para una explicación más detallada véase reflexión (física).

refraccion

refraccion:

La refracción es el cambio de dirección que como experimenta una onda al pasar de un medio material a otro. Sólo se produce si la onda incide oblicuamente sobre la superficie de separación de los dos medios y si éstos tienen índices de refracción distintos. La refracción se origina en el cambio de velocidad que experimenta la onda. El índice de refracción es precisamente la relación entre la velocidad de la onda en un medio de referencia (el vacío para las ondas electromagnéticas) y su velocidad en el medio del que se trate.
Un ejemplo de este fenómeno se ve cuando se sumerge un lápiz en un vaso con agua: el lápiz parece quebrado. También se produce refracción cuando la luz atraviesa capas de aire a distinta temperatura, de la que depende el índice de refracción. Los espejismos son producidos por un caso extremo de refracción, denominado reflexión total.
Se produce cuando la luz pasa de un medio de propagación a otro con una densidad óptica diferente, sufriendo un cambio de rapidez y un cambio de dirección si no incide perpendicularmente en la superficie. Esta desviación en la dirección de propagación se explica por medio de la ley de Snell. Esta ley, así como la refracción en medios no homogéneos, son consecuencia del principio de Fermat, que indica que la luz se propaga entre dos puntos siguiendo la trayectoria de recorrido óptico de menor tiempo.

difraccion

difraccion:

En física, la difracción es un fenómeno característico de las ondas que consiste en la dispersión y curvado aparente de las ondas cuando encuentran un obstáculo. La difracción ocurre en todo tipo de ondas, desde ondas sonoras, ondas en la superficie de un fluido y ondas electromagnéticas como la luz y las ondas de radio. También sucede cuando un grupo de ondas de tamaño finito se propaga; por ejemplo, por causa de la difracción, un haz angosto de ondas de luz de un láser deben finalmente divergir en un rayo más amplio a una cierta distancia del emisor.

Comparación entre los patrones de difracción e interferencia producidos por una doble rendija (arriba) y cinco rendijas (abajo).
El fenómeno de la difracción es un fenómeno de tipo interferencial y como tal requiere la superposición de ondas coherentes entre sí.
Se produce cuando la longitud de onda es mayor que las dimensiones del objeto, por tanto, los efectos de la difracción disminuyen hasta hacerse indetectables a medida que el tamaño del objeto aumenta comparado con la longitud de onda.

la termodinamica

La termodinamica.

puede definirse como el tema de la Física que estudia los procesos en los que se transfiere energía como calor y como trabajo.Sabemos que se efectúa trabajo cuando la energía se transfiere de un cuerpo a otro por medios mecánicos. El calor es una transferencia de energía de un cuerpo a un segundo cuerpo que está a menor temperatura. O sea, el calor es muy semejante al trabajo.El calor se define como una transferencia de energía debida a una diferencia de temperatura, mientras que el trabajo es una transferencia de energía que no se debe a una diferencia de temperatura.Al hablar de termodinamica, con frecuencia se usa el término "sistema". Por sistema se entiende un objeto o conjunto de objetos que deseamos considerar. El resto, lo demás en el Universo, que no pertenece al sistema, se conoce como su "ambiente". Se consideran varios tipos de sistemas. En un sistema cerrado no entra ni sale masa, contrariamente a los sistemas abiertos donde sí puede entrar o salir masa. Un sistema cerrado es aislado si no pasa energía en cualquiera de sus formas por sus fronteras.Previo a profundizar en este tema de la termodinamica, es imprescindible establecer una clara distinción entre tres conceptos básicos: temperatura, calor y energía interna. Como ejemplo ilustrativo, es conveniente recurrir a la teoría cinética de los gases, en que éstos sabemos están constituidos por numerosísimas moléculas en permanente choque entre sí.La temperatura es una medida de la energía cinética media de las moléculas individuales. El calor es una transferencia de energía, como energía térmica, de un objeto a otro debida a una diferencia de temperatura. La energía interna (o térmica) es la energía total de todas las moléculas del objeto, o sea incluye energía cinética de traslación, rotación y vibración de las moléculas, energía potencial en moléculas y energía potencial entre moléculas. Para mayor claridad, imaginemos dos barras calientes de un mismo material de igual masa y temperatura. Entre las dos tienen el doble de la energía interna respecto de una sola barra. Notemos que el flujo de calor entre dos objetos depende de sus temperaturas y no de cuánta energía térmica o interna tiene cada uno. El flujo de calor es siempre desde el objeto a mayor temperatura hacia el objeto a menor temperatura.